Lipschitz approximation of homeomorphisms

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of Hölder continuous homeomorphisms by piecewise affine homeomorphisms

This paper is concerned with the problem of approximating a homeomorphism by piecewise affine homeomorphisms. The main result is as follows: every homeomorphism from a planar domain with a polygonal boundary to R that is globally Hölder continuous of exponent α ∈ (0, 1], and whose inverse is also globally Hölder continuous of exponent α can be approximated in the Hölder norm of exponent β by pi...

متن کامل

Volume Preserving Bi-lipschitz Homeomorphisms on the Heisenberg Group

The use of sub-Riemannian geometry on the Heisenberg group H(n) provides a compact picture of symplectic geometry. Any Hamiltonian diffeomorphism on R lifts to a volume preserving bi-Lipschitz homeomorphisms of H(n), with the use of its generating function. Any curve of a flow of such homeomorphisms deviates from horizontality by the Hamiltonian of the flow. From the metric point of view this m...

متن کامل

Cantor Sets, Binary Trees and Lipschitz Circle Homeomorphisms

We define the notion of rotations on infinite binary trees, and construct an irrational tree rotation with bounded distortion. This lifts naturally to a Lipschitz circle homeomorphism having the middle-thirds Cantor set as its minimal set. This degree of smoothness is best possible, since it is known that no C1 circle diffeomorphism can have a linearly self-similar Cantor set as its minimal set.

متن کامل

Smooth Approximation of Lipschitz Projections

We show that any Lipschitz projection-valued function p on a connected closed Riemannian manifold can be approximated uniformly by smooth projection-valued functions q with Lipschitz constant close to that of p. This answers a question of Rieffel.

متن کامل

Non-Lipschitz Semi-Infinite Optimization Problems Involving Local Cone Approximation

In this paper we study the nonsmooth semi-infinite programming problem with inequality constraints. First, we consider the notions of local cone approximation $Lambda$ and $Lambda$-subdifferential. Then, we derive the Karush-Kuhn-Tucker optimality conditions under the Abadie and the Guignard constraint qualifications.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Academiae Scientiarum Fennicae Series A I Mathematica

سال: 1979

ISSN: 0066-1953

DOI: 10.5186/aasfm.1978-79.0427